13 research outputs found

    Chain Galaxies are Edge-On Low Surface Brightness Galaxies

    Get PDF
    Deep HST WFPC2 images have revealed a population of very narrow blue galaxies which Cowie et al. (1996) have interpreted as being a new morphological class of intrinsically linear star forming galaxies at z=0.53z=0.5-3. We show that the same population exists in large numbers at low redshifts (z=0.03) and are actually the edge-on manifestation of low surface brightness disk galaxies.Comment: 18 pages + 3 pages of figures. Uuencoded, gzipped, tar file of 1 latex file, 5 figures, and 2 latex style files. To appear in the Astrophysical Journal Letter

    A Structural and Dynamical Study of Late-Type, Edge-On Galaxies: I. Sample Selection and Imaging Data

    Get PDF
    We present optical (B & R) and infrared (K_s) images and photometry for a sample of 49 extremely late-type, edge-on disk galaxies selected from the Flat Galaxy Catalog of Karenchentsev et al. (1993). Our sample was selected to include galaxies with particularly large axial ratios, increading the likelihood that the galaxies in the sample are truly edge-on. We have also concentrated the sample on galaxies with low apparent surface brightness, in order to increase the representation of intrinisically low surface brightness galaxies. Finally, the sample was chosen to have no apprarent bulges or optical warps so that the galaxies represent undisturbed, ``pure disk'' systems. The resulting sample forms the basis for a much larger spectroscopic study designed to place constraints on the physical quantities and processes which shape disk galaxies. The imaging data presented in this paper has been painstakingly reduced and calibrated to allow accurate surface photometry of features as faint as 30 mag/sqr-arcsec in B and 29 mag/sqr-arcsec in R on scales larger than 10 arcsec. Due to limitations in sky subtraction and flat fielding, the infrared data can reach only to 22.5 mag/sqr-arcsec in K_s on comparable scales. As part of this work, we have developed a new method for quantifying the reliability of surface photometry, which provides useful diagnostics for the presence of scattered light, optical emission from infrared cirrus, and other sources of non-uniform sky backgrounds.Comment: scheduled to appear in the Astronomical Journal, LaTeX, 36 pages including 7 pages of figures (fig 1-2,4). A low resolution version of Figure 3 is included in JPEG format; contours are seriously degraded. A full resolution Postscript version of Figure 3 (10.6Mb,gzipped) is available through anonymous ftp at ftp://ftp.astro.washington.edu/pub/users/jd/FGC/dalcanton.f3.ps.g

    Structural Parameters of Thin and Thick Disks in Edge-On Disk Galaxies

    Full text link
    We analyze the global structure of 34 late-type, edge-on, undisturbed, disk galaxies spanning a wide range of mass. We measure structural parameters for the galaxies using two-dimensional least-squares fitting to our RR-band photometry. The fits require both a thick and a thin disk to adequately fit the data. The thick disks have larger scale heights and longer scale lengths than the embedded thin disks, by factors of ~2 and ~1.25, respectively. The observed structural parameters agree well with the properties of thick and thin disks derived from star counts in the Milky Way and from resolved stellar populations in nearby galaxies. We find that massive galaxies' luminosities are dominated by the thin disk. However, in low mass galaxies (Vc < 120 km/s), thick disk stars contribute nearly half of the luminosity and dominate the stellar mass. Thus, although low mass dwarf galaxies appear blue, the majority of their stars are probably quite old. Our data are most easily explained by a formation scenario where the thick disk is assembled through direct accretion of stellar material from merging satellites while the thin disk is formed from accreted gas. The baryonic fraction in the thin disk therefore constrains the gas-richness of the merging pre-galactic fragments. If we include the mass in HI as part of the thin disk, the thick disk contains <10% of the baryons in high mass galaxies, and ~25-30% of the baryons in low-mass galaxies. We discuss how our trends can be explained by supernova-driven outflow at early times as well as the possibilities for predicting abundance trends in thick disks, and for removing discrepancies between semi-analytic galaxy formation models and the observed colors of low mass galaxies. (abstract abridged)Comment: 25 pages, 24 figures, accepted for publication in A

    The Formation of Dust Lanes: Implications for Galaxy Evolution

    Full text link
    We find that disk galaxies show a sharp, mass-dependent transition in the structure of their dusty ISM. Dust lanes are a generic feature of massive disks with V_rot>120km/s, but are completely absent in galaxies with V_rot<120km/s. The transition reflects an increase in the scale height of the cold ISM in low mass galaxies, driven by larger turbulent velocities supporting the gas layer, rather than sharp drops in the gas surface density. We identify the V_rot=120km/s transition with the onset of gravitational instabilities in high mass galaxies. The instabilities lead to fragmentation and gravitational collapse along spiral arms, smaller gas scale heights, lower turbulent velocities, and thus to narrow dust lanes. The drop in velocity dispersion may be due either to a switch in the driving mechanism for turbulence or to a change in the response of the ISM to supernovae after the ISM has collapsed to a dense layer. The resulting smaller gas scale height can lead to significant increases in the star formation rate when disk instabilities are present, and may explain the Kennicutt surface density threshold for star formation. Our data suggest that star formation will be systematically less efficient in low mass disks with V_c<120km/s, leading to star formation timescales longer than the gas accretion timescale. This effect can suppress the metallicity and nucleosynthetic yields of low mass disks, and thus explain the disk mass-metallicity relationship without invoking galactic SN-driven outflows. The transitions in disk stability, dust structure, and/or star formation efficiency may also be responsible for observed changes in the slope of the Tully-Fisher relation, in the sharp increase in the thickness of dwarf galaxy disks, and in the onset of bulges in galaxies with V_rot>120km/s. (Abridged)Comment: 20 pages, Accepted by the Astrophysical Journa
    corecore